metal-organic papers

Received 20 December 2004

Accepted 4 January 2005

Online 8 January 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Qin Liu, Hisashi Konaka, Takayoshi Kuroda-Sowa and Megumu Munakata*

Department of Science, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

Correspondence e-mail: munakata@chem.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.004 Å R factor = 0.025 wR factor = 0.047 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis(μ_4 -hexafluoroglutarato)bis(tetrahydrofuran)tetrasilver(I)]- μ_2 -4,4'biphenyldicarbonitrile]

The title complex, $[Ag_4(C_5F_6O_4)_2(C_{14}H_8N_2)(C_4H_8O)_2]_n$, exhibits a one-dimensional chain structure propagated through inversion centres, with two crystallographically independent Ag^I atoms in the asymmetric unit. One of the Ag atoms has a distorted trigonal-pyramidal coordination, defined by two carboxyl O atoms from two hexafluoroglutarate (HFG²⁻) anions, one N atom from 4,4'-biphenyldicarbonitrile and one apical O atom of tetrahydrofuran. The other Ag atom is coordinated by two O atoms from two HFG²⁻ anions.

Comment

In recent years, significant research effort has been focused on coordination polymers, because of their potential application in catalysis, ion exchange and gas separation (Eddaoudi *et al.*, 2002; Moulton & Zaworotko, 2001). Popular bridging ligands in this field are the bidentate 4,4'-bipyridine and its derivatives (Eddaoudi *et al.*, 2001). Numerous complexes with these ligands have been extensively investigated, while new complexes are constantly being synthesized. Other bidentate ligands, such as 4,4'-biphenyldicarbonitrile (BPCN), however, have received much less attention (Hirsch *et al.*, 1995). We selected BPCN as ligand to react with the silver salt of the dicarboxylate HFG²⁻ (hexafluoroglutarate), generated *in situ*, and isolated a new Ag^I complex, [Ag₄(BPCN)(THF)₂-(HFG)₂], (I). Its crystal structure is reported here.

In complex (I), there are two independent Ag^{I} atoms. Atom Ag1 is four-coordinate and adopts a distorted trigonal-pyramidal geometry (Fig. 1), involving one N atom of BPCN, two O atoms from two HFG²⁻ anions and one apical O atom of THF. The coordination geometry of atom Ag2 is approximately linear but slightly distorted, with an O2-Ag2-O4ⁱ [symmetry code: (i) -x, 1-y, 1-z] bond angle of 167.13 (6)°, involving two O atoms from two HFG²⁻ anions. Two HFG²⁻ anions are linked through O-Ag-O bonds to

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Part of the structure of (I), with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level. All H atoms and the F-atom numbers have been omitted for clarity. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 2 - x, -y, 1 - z.]

Figure 2

One-dimensional chain structure of (I) along the [110] direction. All H atoms have been omitted for clarity.

form a ring with composition $Ag_4(HFG)_2$, and BPCN molecules act as bridging ligands to link these rings to afford a one-dimensional chain with THF molecules as terminal ligands (Fig. 2). The distance between atoms Ag1 and Ag2 [2.9852 (6) Å] is shorter than the sum of the van der Waals radii of two Ag atoms (3.44 Å), indicating the existence of $Ag \cdot \cdot Ag$ interactions.

The Ag-N bond length in (I) [2.385(2) Å] is longer than those in trifluoromethanesulfonatesilver(I)- μ_2 -4,4'-biphenyldicarbonitrile [2.133 (3) and 2.138 (3) Å; Hirsch et al., 1995], difluorophosphatesilver(I)- μ_2 -4,4'-dicyanodiphenylacetylene [2.186 (3) Å; Hirsch et al., 1996] and silver(I)- μ_2 -1,4dicyanobenzene [2.211 (2) and 2.284 (2) Å; Venkataraman et al., 1996], while the Ag-O bond lengths in (I) [2.141 (2)– 2.284 (2) Å] are shorter because the coordination ability of dicarboxylate anions is stronger than that of monoanions, resulting in the weaker Ag-N bond interactions. The Ag1-O5 bond [2.516(2) Å] is substantially longer than the others. The O1-Ag1-O3ⁱ bond angle $[153.64 (6)^{\circ}]$ is larger than the other two about atom Ag1 in the basal plane, viz. O1-Ag1-N1 [105.78 (7)°] and $O3^{i}$ -Ag1-N1 [100.23 (7)°], apparently as a result of the Ag···Ag interactions. The HFG^{2-} anion adopts a cis configuration and coordinates to four Ag atoms belonging to one repeat unit.

Experimental

Hexafluoroglutaric acid (0.4 mmol, 96.0 mg) and silver(I) trifluoroacetate (0.1 mmol, 22.1 mg) were dissolved in THF with stirring for 20 min, then 4,4'-biphenyldicarbonitrile (0.025 mmol, 5.1 mg) was added to the above solution. The mixture was stirred for another 20 min. The resulting solution was introduced into a glass tube and layered with tetradecane. The glass tube was sealed under argon. After standing at room temperature for 6 d, colourless needleshapedcrystals of (I) were isolated (yield 63%). Analysis calculated for C32H24Ag4F12N2O10: C 30.60, H 1.93, N 2.23%; found: C 30.36, H 1.91, N 2.18%.

Crystal data

 $[Ag_4(C_5F_6O_4)_2(C_{14}H_8N_2)(C_4H_8O)_2]$ $M_r = 1256.00$ Monoclinic, $P2_1/c$ a = 5.737 (2) Å b = 18.801 (6) Å c = 16.518 (6) Å $\beta = 93.368 \ (4)^{\circ}$ $V = 1778.6 (11) \text{ Å}^3$ Z = 2

Data collection

Rigaku/MSC Mercury CCD	4068 indeper
diffractometer	3744 reflection
ω scans	$R_{\rm int} = 0.023$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(Jacobson, 1998)	$h = -5 \rightarrow 7$
$T_{\min} = 0.659, \ T_{\max} = 0.795$	$k = -18 \rightarrow 2$
13 771 measured reflections	$l = -21 \rightarrow 2$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2)]$

R $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.047$ S = 1.113744 reflections 271 parameters H-atom parameters constrained ndent reflections ons with $I > 2\sigma(I)$ 24 1

 $D_x = 2.345 \text{ Mg m}^{-3}$

Cell parameters from 5730

Mo $K\alpha$ radiation

reflections

 $\theta = 3.2 - 27.5^{\circ}$ $\mu = 2.29 \text{ mm}^{-1}$

T = 150.2 K

Needle, colourless

 $0.25 \times 0.15 \times 0.10 \ \mathrm{mm}$

 $^{2}) + (0.0156P)^{2}$ + 1.6769P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Ag1-01	2.284 (2)	O1-C8	1.240 (3)
Ag1-O3 ⁱ	2.257 (2)	O2-C8	1.245 (3)
Ag1-O5	2.516 (2)	O3-C12	1.224 (3)
Ag1-N1	2.385 (2)	O4-C12	1.268 (3)
Ag2-O2	2.141 (2)	N1-C1	1.122 (3)
Ag2-O4 ⁱ	2.173 (2)		
O1-Ag1-O3 ⁱ	153.64 (6)	O3 ⁱ -Ag1-N1	100.23 (7)
O1-Ag1-O5	85.03 (6)	O5-Ag1-N1	86.88 (7)
O1-Ag1-N1	105.78 (7)	O2-Ag2-O4 ⁱ	167.13 (6)
$O3^{i} - Ag1 - O5$	100.80 (6)	-	

Symmetry code: (i) -x, -y + 1, -z + 1.

All H atoms were placed in calculated positions and refined as riding, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: CrystalClear (Rigaku Corporation, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

The authors acknowledge financial support from a Grantin-Aid for Scientific Research (Nos. 14340211 and 13874084) from the Ministry of Education, Science, Sports and Culture in Japan.

References

- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). *Science*, **295**, 469–472.
- Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Hirsch, K. A., Venkataraman, D., Wilson, S. R., Moore, J. S. & Lee, S. (1995). J. Chem. Soc. Chem. Commun. pp. 2199–2200.
- Hirsch, K. A., Wilson, S. R. & Moore, J. S. (1996). *Acta Cryst.* C52, 2419–2422. Jacobson, R. (1998). Private communication to Rigaku Corporation.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1626-1658.
- Rigaku Corporation (2001). CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.
- Venkataraman, D., Gardner, G. B., Covey, A. C., Lee, S. & Moore, J. S. (1996). Acta Cryst. C52, 2416–2419.